E. Homotopy equivalence and cobordism

The 11:

If X and X' are simply connected, closed 4-manifolds
then
their intersection forms are isomorphic
(whitehead, Milnor)
they are homotopy equivalent
(wall)
The are h-cobordant

Proof of 10:

(€) is clear (cup product is a homotopy invariant)

(=) consider the homotopy type of X = X-B4

note
$$H_i(X_0; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & 1=0 \\ \mathbb{C}_{r} \mathbb{Z} & 2=2 \\ 0 & 1=1 \text{ or } > 3 \end{cases}$$

Since T(X0) = (e)

Herewite the > TZ(X) = HZ(X) = DZ

so there is a continuous map

$$f: S^2 \vee ... \vee S^2 \rightarrow M$$

that includes an isomorphism on TIZ

:. $f_{\mathbf{x}}: H_{\mathbf{x}}(5^2 \mathbf{v} - \mathbf{v} 5^2) \rightarrow H_{\mathbf{x}}(\mathbf{x}_0)$ an isomorphism

Since $5^2v.-v.5^2$ simply connected the Whitehead theorem implies f a homotopy equivalence if X_o a CW complex, but handle str. on X_o gives us this (this is true for top. mfds too but

need to know X has htpy type of CW complex)

now X is obtained from X₀ by attaching a 4-cell

:. X is homotopy equivalent to $5^2v...v5^2$ with a

4-cell attached by some map $g: 5^3 \rightarrow 5^2v...v5^2$

and the homotopy class of X is determined by the homotopy class of g 1.2. an elt of $W_3(S^2v...vS^2)$ to the homotopy class [g] we can associate a symmetric matrix $A_{[g]}$ satisfying

- (1) A_[9] is isomorphic to the intersection matrix of X
- Portragin-Thom between symmetric rxr matricies and elements of T3 (52v...v52)

given this the homotopy type of X is ditenmed by its intersection form!

choose a point p_i on each S^2 in $S^2v...vS^2$ (distinct from wedge pt)

Nomotop g to be transverse to the p_i let $k_i = g^{-1}(p_i)$ note: by orienting the S^2 's and S^3 these are oriented links

<u>Prencise</u>: each K; has a framing

<u>hint</u>: a basis e, e, of Tp, 5² gives the

trivialization of $V(K_i)$

we now get a linking matrix for $K_1 \cup ... \cup K_r$ which we denote A_g (1e. $M_{ij} = |h(K_1, K_j)| \text{ for } 1 \neq j$ $M_{11} = \text{framing of } K_i$)

we say 2 framed links UK_i and UK_i are framed cobordont

If $\exists a \leq V \neq a \leq US_i \subseteq Eo_i J \times S^3 \text{ with framing such that}$ $US_i \land \{o\} \times S^3 = K_i$ and $US_i \land \{o\} \times S^3 = K_i'$ and framing on S_i restrict to those on $S_i \in S_i'$

exercise!

1) if UK; framed cobordant to UK; then
their linking matricles are isomorphic
2) if a is homotopic to a then A is

z) it g is homotopic tog'then Ag is isomorphic to Agi

so there is a well-defined A EgJ

3) we can homotop g so that each Ki is connected

Proof of 10:

for each K_i let Z_i be a surface in B^4 with boundary K_i in $\hat{X} = (S^2 v - v S^2) v B^4$, let $\overline{Z}_i = \Sigma_i / S_{Z_i}$ be a

closed surface (note $g(S_i) = p_i$)

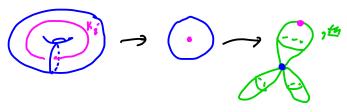
exercise: the Σ_1 generate $H_z(\hat{X})$

from construction it is easy to see the Mensection matrix for \hat{X} is Ag

Proof of (2):

from above there is a well-defined map $\pi_3(5^2 v... v 5^2) \rightarrow \{\text{symmetric motrices}\}$

first we see this map is onto:


given A, let K, v-vKr be a framed link in 53

whose linking matrix is A

each K_i has a nebhol $K_i * D^2$ with the product structure coming from the framing

we can map

 $K_i \times D^2 \longrightarrow D^2 \longrightarrow 1^{\frac{14}{9}} 5^2$ s.t. conser point of D^2 goes to p_i and ∂D^2 goes to wedge point

we now get $g_A: 5^3 \longrightarrow 5^2 v ... v 5^2$ by sending $5^3 - U(K_i \times D^2)$ to wedge point

clearly $g_A^{-1}(P_i) = K_1 v - v K_r$ so the

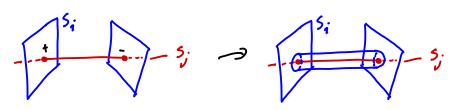
map is onto

MOW Suppose $90.9:5^3 \rightarrow 5^2 \text{v...v.} 5^2$ give the same matrix A technically they are just isomorphic, we assume they are the same and leave general case as an exercise

exercise: given the framed lisk his from

gi show gi can be honotoped

so it came from the construction
above


so the links Lo and L, have the same linking motivise any 2 knots in 53 are cobordant so we can pair up a component of Lo with a component of L, so the linking data preserved now let 5,,-- So be surfaces embedded in

[0.1] × 5³ giving a cobordism between

paired components

exercise: the Si's might intersect but their algebraic intersection is 0

so points in 5, 15; pair up now alter 5; as follows

now 5,0--05, is embedded

since the framings on 25, agree we can frame S; using this framing

we can now build a map $H: 5^{3} \times \{0,1] \rightarrow 5^{2} \times 10^{-1}$ as above

and H will be a homotopy from go to g, (after g; modified as in exercise above)

we need a few preliminary ideas before proving part @ of the theorem

if X is an oriented manifold of dimension = 3 then

a spin structure on X is a trivialization of TX on

the 1-sheleton of X that extends to the 2-sheleton

of X

exercisé: you can think of an onéntation of X as a trivialization of TX on the O-sheleton that extends over the 1-sheleton

So a spin str. is kind of a "stronger oneintation"

Remark: If X is orientable then the $1^{\frac{st}{s}}$ Steifel-Whitney class vanishes: $w_i(TX) = 0$ one can show an onentable manifold $X \text{ is } spin \iff w_i(TX) = 0$

Fact: 1) if a 4-manifold X is spin, then its intersection form is even if TilX=113, then X is spin (=) its intersection form is even

- 2) if X' is spin and o-(X)=0 then X bounds a spin 5-manifold W
- 3) a 5D 2-handle is determined by its attaching 5' and a framing: $T_{i,j}(SO(3)) \cong Z_{i,j}$

attaching a 2-handle to $B^5=h^\circ$ results in a D^3 -bundle over S^2 (just like we saw in 4D)

with one framing you get $5^2 \times D^3$ with the other you get $5^2 \times D^3$ (the unique non-trivial bundle)

their boundaries are $5^2 \times 5^2$ 0° or $5^2 \times 5^2$ 0°

If IW not spin, then attaching a 2-handle with either framing gives the same thing (the idea is you can push attaching sphere over on odd homology class to change its framing)

4) if W is a spin 5-manifold and $W'=W \cup k$ -handle then W' is spin if $k \neq 2$ or k=2 and we have the "trivial" framing

Proof of The 112:

(€) clear

(=) We begin by considering X a spin manifold and X' homotopy equivalent to X (and hence spin) $\sigma(X \cup -X') = \sigma(X) + \sigma(-X') = \sigma(X) - \sigma(X') = 0$

so there is a spin 5-manifold W s.t. DW=-X'UX

i.e. W a cobordism from X' to X
we need to turn W into an h-cobordism recall this means

Wi (w)= [1] and

1: X cs W, 1': X -> W are htpy, equiv.

we know w has a hardlebody structure:

([0,1] × X') u(1-h) s u (2-h) s u (3-4) s u (4-h) s from Section I

Consider a 1-handle

Its attaching sphere can be isotoped into a ball in {1}+X' boundary sun

exercise: ([0,1] x x/b (-4) = ([0,1]xx') = 5'+D4

50 the upper boundary of $([0,1]\times X')\cup ([-1))$ is $X'\# S'_{\times}S^3$ if we attach a 3-handle to $[0,1]\times X'$ we also get a abordism with upper boundary $X'\# S'\times S^3$ i.e. $([0,1]\times X')\cup 3-4\cong ([0,1]\times X')\not= S^3\times D^2$

:. we can replace all 1-handles with 3-handles to get another cobordism from X' to X (5 till call it W)

we can similarly replace 4-handles with 2-handles (just turn W upside down)

50 we can assume Wis

([0,1]x X') 0(2-4) 5 0 (3-4) 5

Since X' is simply connected we can assume all
the attaching spheres for 2-handles are unknows
in balls in \(\frac{1}{1}\) \times X'

and since W spin, framings are trivial so
\(\frac{1}{4}\)\(\frac{1}{2}\) \times \(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{2}\)\(\frac{1}{4}\)\(

of course, upside down we see $\partial_{+} \widetilde{W}_{2} = X \#_{2} S^{2} + S^{2}$ where $l = \#_{3}$ -handles since $\partial_{+} (\overline{W}_{2}) \cong \partial_{+} W_{2}$ we see k = l

Th = 12 (Wall):

if X, X' are homotopy equivalent, simply connected

4-manifolds, then there is some k such that

X# 52+52 is diffeomorphic to X'# 52+52

Proof: we just proved this for X spin, the general case will be shown below

Major Open Question: in theorem above can you always take k=1

(you can in all known examples)

closure

let W= W'UW" where W= W_2 and W"= W-W_2

(1e. we cut W along X' #k 5252)

so there is a diffeomorphism f: X #52x52 X'#52x52

Such that W = W'Uf W"

we would like to find a diffeo. $h: X' \# S^2 \times S^2 \rightarrow X' \# S^2 \times S^2$ such that in $W' U_{hof} W''$ the 3-handles homologically cancel the 2-handles

if we can do this, then $\hat{W} = W' y_{0} f W''$ will be simply connected and $H_{*}(\hat{W}, x') = 0$ so \hat{W} is the desired h-cobordism!

for this we need

Th = 13 (Wall):

let X be a smooth, simply connected, closed 4-manifold with an indefinite intersection form Then any automorphism of the intersection form of X # 5²x5² can be realized by a diffeomorphism

now we can add an extra $5^2 \times 5^2$ to $\partial_+ W_2$ if needed to apply this theorem by adding a cancelling 2/3-pair since the cocores $c_1,...c_n$ of the 2-handles can form part of a basis for the $5^2 \times 5^2$ part of $H_2(X' + 5^2 \times 5^2)$ let $C'_1,...$ C'_n be the elements $(1e. C_1 \cdot C'_1 = S_{ij})$ note: we need the attaching spheres of 3-handles to to homologically map to C'_1 to kill homology

similarly let annal be the attaching spheres of the 3-handles

there is an automorphism

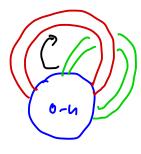
 $\Psi: H_2(\#_k 5^2 \times 5^2) \longrightarrow H_2(\#_k 5^2 \times 5^2)$ taking the o_i to C_1'

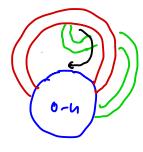
let $\phi: H_2(X) \to H_2(X')$ be the isomorphism induced by the homotopy equivalence

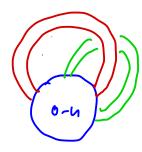
we would like a differ. $h: X' \#_k S^2 \times S^2 \rightarrow X' \#_k S^2 \times S^2$ St. $(h \circ f)_{\#} = \phi \oplus \Psi$

to this end consider (404). fx

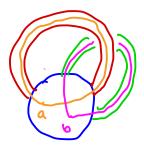
this is an automorphism of $H_2(X'\#_k S^2 \times S^2)$ so by $TL_1^{\infty}13$ I an h replaint it and we are done!

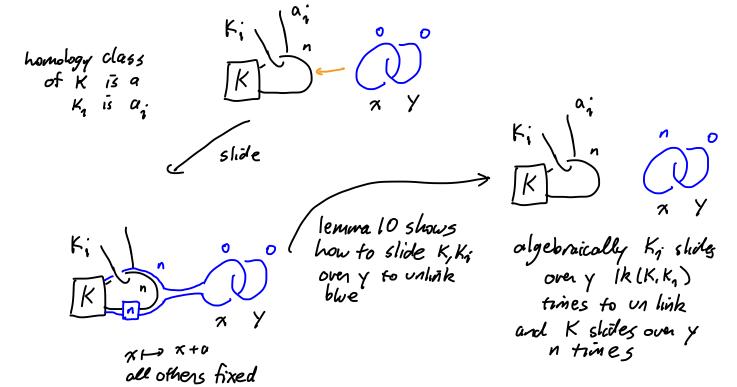

Now if X, X' are not spin the we are still done if $\partial W_2 = X' \#_K S^2 X^2$ but from above we know it must be $X' \#_K S^2 \times S^2 \#_K S^2 X^2 S^2$ and since X' is not-spin this is differ to $X' \#_{K_1 \#_K} S^2 \times S^2$ and we are done


Proof of Th = 13:


let's begin by constructing some diffeomorphisms of 4-manifolds

we start by assuming X has no 1 or 3-handles
recall if we isotop the attaching regions of the
2-handles we get diffeomorphic manifolds
but if we isotop intill the hondles return to
their original position, then we get a
diffeomorphism of a fixed manifold


recall in 2D



on homology we see

o → a b → b+a so His is a Dehn twist!

we now consider the 4D case

if n is even then we can slide the left live over y, it times to get to 0 framing and back to the original Kirby diagram: we get a diffeo. of X and

on homology $x \mapsto x + a - \frac{1}{2}n$ $y \mapsto y$ $a \mapsto a - ny$ $a_1 \mapsto a_1 - lk(K_1K_1)y$

if n is odd then we can go through the above isotopy again, but now the framing on "x" is n+1 after the slide so we will get back to the original diagram now the diffeo. acts on homology by

$$\begin{array}{ccc}
\chi & \longmapsto \chi + q - n \\
\gamma & \longmapsto \gamma \\
0 & \longmapsto q - 2n \\
\alpha_1 & \longmapsto q_1 - 2 lk(K_1 K_1) \gamma
\end{array}$$

Intersection form

Wall proved that any automorphism of $(H_Z(X), Q_X)$ is a composition of such maps $:= \exists$ a diffeo inducing it

now if X has 1 or 3-handles, we can perform handle slides (like we did in the h-cobordism the) to do column operations on the maps $C_3(X) \stackrel{?}{\to} C_2(X) \stackrel{?}{\to} C_i(X) \qquad (CW chain graps)$ Untill they are of the form I and $(\stackrel{?}{\to} 0) \text{ respectively}$ then do above on classes representing elfs in ker ∂_2 / im ∂_3